微信群里有人问我大数据学习线路是怎样的?需要学习哪些知识以及工作后工作内容有哪些?我这里通过这篇文章给大家分享一下大数据相关领域的学习线路和知识掌握情况,希望能够帮助到大家!
大数据不是某个专业或一门编程语言,实际上它是一系列技术的组合运用。有人通过下方的等式给出了大数据的定义。
大数据 = 编程技巧 + 数据结构和算法 + 分析能力 + 数据库技能 + 数学 + 机器学习 + NLP + OS + 密码学 + 并行编程虽然这个等式看起来很长,需要学习的东西很多,但付出和汇报是成正比的,至少和薪资是成正比的。
有这么多知识需要学习,那么该怎么学?如何学?
有人简单的将学习线路总结为:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。其实这是不准确的,因为大数据也是可以分方向的!
大数据的三个发展方向:平台搭建/优化/运维/监控、大数据开发/ 设计/ 架构、数据分析/挖掘。
我们先来看一下大数据的4V特征:
针对大数据的特点,我们需要掌握的重点知识如下:
可以说多,也可以说简单。因为你只要入门了,有兴趣了,学什么东西都便的简单了!
关于上面的这些知识点,我都有对应的视频教程。大家只需要扫描下方微信二维码,关注“业余草”微信公众号,我每天或者每周都会有对应的视频推出,免费赠送给大家!
网上的这些内容都是收费的,我免费,全免费,一分钱不要!
总共分为五大部分,分别是:
不多说了,这些视频我都会一一的分享,慢慢关注我吧!